গনিতের সুত্রাবলি

গণিতের শর্টকাট ও টেকনিক

Table of Contents

গণিতের শর্টকাট ও টেকনিক

 

গণিতের শর্টকাট ও টেকনিক ও মনেেোখার সহজ উপায় নিচে দেয়া হল:

 

1-100 পর্যন্ত মৌলিক সংখ্যামনে রাখার সহজ উপায়ঃ

শর্টকাট :- 44 -22 -322-321

 

1থেকে100পর্যন্ত মৌলিক সংখ্যা=25টি

1থেকে10পর্যন্ত মৌলিক সংখ্যা=4টি 2,3,5,7

11থেকে20পর্যন্ত মৌলিক সংখ্যা=4টি 11,13,17,19

21থেকে30পর্যন্ত মৌলিক সংখ্যা=2টি 23,29

31থেকে40পর্যন্ত মৌলিক সংখ্যা=2টি 31,37

41থেকে50পর্যন্ত মৌলিক সংখ্যা=3টি 41,43,47

51থেকে 60পর্যন্ত মৌলিক সংখ্যা=2টি 53,59

61থেকে70পর্যন্ত মৌলিক সংখ্যা=2টি 61,67

71থেকে80 পর্যন্ত মৌলিক সংখ্যা=3টি 71,73,79

81থেকে 90পর্যন্ত মৌলিক সংখ্যা=2টি 83,89

91থেকে100পর্যন্ত মৌলিক সংখ্যা=1টি 97

 

1-100 পর্যন্ত মৌলিক সংখ্যা 25 টিঃ

2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97

 

1-100পর্যন্ত মৌলিক সংখ্যার যোগফল

উত্তর: 1060।

 

  1. কোন কিছুর গতিবেগ= অতিক্রান্ত দূরত্ব/সময়
  2. অতিক্রান্ত দূরত্ব = গতিবেগ×সময়
  3. সময়= মোট দূরত্ব/বেগ
  4. স্রোতের অনুকূলে নৌকার কার্যকরী গতিবেগ = নৌকার প্রকৃত গতিবেগ + স্রোতের গতিবেগ।
  5. স্রোতের প্রতিকূলে নৌকার কার্যকরী গতিবেগ = নৌকার প্রকৃত গতিবেগ – স্রোতের গতিবেগ

 

নৌকার গতি স্রোতের অনুকূলে ঘন্টায় 10 কি.মি. এবং স্রোতের প্রতিকূলে 2 কি.মি.। স্রোতের বেগ কত?

টেকনিক-
স্রোতের বেগ = (স্রোতের অনুকূলে নৌকার বেগ – স্রোতের প্রতিকূলে নৌকার বেগ) /2
= (10 – 2)/2=
= 4 কি.মি.

 

গণিতের শর্টকাট ও টেকনিক

 

একটি নৌকা স্রোতের অনুকূলে ঘন্টায় 8 কি.মি.এবং স্রোতের প্রতিকূলে ঘন্টায় 4 কি.মি. যায়। নৌকার বেগ কত?

টেকনিক-
নৌকার বেগ = (স্রোতের অনুকূলে নৌকার বেগ+স্রোতের প্রতিকূলে নৌকার বেগ)/2
= (8 + 4)/2
=6 কি.মি.

 

নৌকা ও স্রোতের বেগ ঘন্টায় যথাক্রমে 10 কি.মি. ও 5 কি.মি.। নদীপথে 45 কি.মি. পথ একবার গিয়ে ফিরে আসতে কত সময় লাগবে?

টেকনিক-
মােট সময় = [(মােট দূরত্ব/ অনুকূলে বেগ) + (মােট দূরত্ব/প্রতিকূলে বেগ)]
উত্তর:স্রোতের অনুকূলে নৌকারবেগ = (10+5) = 15 কি.মি.
স্রোতের প্রতিকূলে নৌকার বেগ = (10-5) = 5কি.মি.
[(45/15) +(45/5)]
= 3+9
=12 ঘন্টা

See also  বীজগণিতের সূত্রাবলী সমুহ

 

 

গণিতের শর্টকাট ও টেকনিক

 

সমান্তর ধারার ক্রমিক সংখ্যার যোগফল- (যখন সংখ্যাটি1 থেকে শুরু)1+2+3+4+……+n হলে এরূপ ধারার সমষ্টি= [n(n+1)/2] n=শেষ সংখ্যা বা পদ সংখ্যা s=যোগফল

 প্রশ্নঃ 1+2+3+….+100 =?

সমাধানঃ[n(n+1)/2]
= [100(100+1)/2]
= 5050

 

 

সমান্তর ধারার বর্গ যোগ পদ্ধতির ক্ষেত্রে,- প্রথম n পদের বর্গের সমষ্টি S= [n(n+1)2n+1)/6] (যখন 1² + 2²+ 3² + 4²…….. +n²)

প্রশ্নঃ(1² + 3²+ 5² + ……. +31²) সমান কত?

সমাধানঃ S=[n(n+1)2n+1)/6]
= [31(31+1)2×31+1)/6]
=31

 

সমান্তর ধারার ঘনযোগ পদ্ধতির ক্ষেত্রে- প্রথম n পদের ঘনের সমষ্টি S= [n(n+1)/2]2 (যখন 1³+2³+3³+………….+n³)

প্রশ্নঃ1³+2³+3³+4³+…………+10³=?

সমাধানঃ [n(n+1)/2]2
= [10(10+1)/2]2
= 3025

 

পদ সংখ্যা ও পদ সংখ্যার সমষ্টি নির্নয়ের ক্ষেত্রেঃ পদ সংখ্যা N= [(শেষ পদ – প্রথম পদ)/প্রতি পদে বৃদ্ধি] +1

প্রশ্নঃ5+10+15+…………+50=?

সমাধানঃ পদসংখ্যা = [(শেষ পদ – প্রথমপদ)/প্রতি পদে বৃদ্ধি]+1
= [(50 – 5)/5] + 1
=10
সুতরাং পদ সংখ্যার সমষ্টি
= [(5 + 50)/2] ×10
= 275

n তম পদ=a + (n-1)d এখানে, n =পদসংখ্যা, a = 1ম পদ, d= সাধারণ অন্তর

প্রশ্নঃ 5+8+11+14+…….ধারাটির কোন পদ 302?

সমাধানঃ ধরি, n তম পদ =302
বা, a + (n-1)d=302
বা, 5+(n-1)3 =302
বা, 3n=300
বা, n=100

 

সমান্তর ধারার ক্রমিক বিজোড় সংখ্যার যোগফল-S=M² এখানে,M=মধ্যেমা=(1ম সংখ্যা+শেষ সংখ্যা)/2

প্রশ্নঃ1+3+5+…….+19=কত?

সমাধানঃ S=M²
={(1+19)/2}²
=(20/2)²
=100

 

গণিতের শর্টকাট ও টেকনিক

 

²=1,(11)²=121,(111)²=12321,(1111)²=1234321,(11111)²=123454321

নিয়ম-যতগুলো 1 পাশাপাশি নিয়ে বর্গ করা হবে, বর্গ ফলে 1 থেকে শুরু করে পর পর সেই সংখ্যা পর্যন্ত লিখতে হবে এবং তারপর সেই সংখ্যার পর থেকে অধঃক্রমে পরপর সংখ্যাগুলো লিখে 1 সংখ্যায় শেষ করতে হবে।

 

(3)²=9,(33)²=1089,(333)²=110889,(3333)²=11108889,(33333)²=1111088889

যতগুলি 3 পাশাপাশি নিয়ে বর্গ করা হবে, বর্গ ফলে এককের ঘরে 9 এবং 9 এর বাঁদিকে তার চেয়ে (যতগুলো 3 থাকবে) একটি কম সংখ্যক 8, তার পর বাঁদিকে একটি 0 এবং বাঁদিকে 8 এর সমসংখ্যক 1 বসবে।

 

(6)²=36,(66)²=4356,(666)²=443556,(6666)²=44435556,(66666)²=4444355556

যতগুলি 6 পাশাপাশি নিয়ে বর্গ করা হবে, বর্গ ফলে এককের ঘরে 6 এবং 6 এর বাঁদিকে তার চেয়ে (যতগুলো 6 থাকবে) একটি কম সংখ্যক 5, তার পর বাঁদিকে একটি 3 এবং বাঁদিকে 5 এর সমসংখ্যক 4 বসবে।

 

(9)²=81,(99)²=9801,(999)²=998001,(9999)²=99980001,(99999)²=9999800001

যতগুলি 9 পাশাপাশি নিয়ে বর্গ করা হবে, বর্গ ফলে এককের ঘরে 1 এবং 1 এর বাঁদিকে তার চেয়ে (যতগুলো 9 থাকবে) একটি কম সংখ্যক 0, তার পর বাঁদিকে একটি 8 এবং বাঁদিকে 0 এর সমসংখ্যক 9 বসবে।

 

জোড় সংখ্যা + জোড় সংখ্যা = জোড় সংখ্যা।

যেমনঃ 2 + 6 = 8.

 

জোড় সংখ্যা + বিজোড় সংখ্যা =বিজোড় সংখ্যা।

যেমনঃ 6 + 7 = 13.

 

বিজোড় সংখ্যা + বিজোড় সংখ্যা =জোড় সংখ্যা।

যেমনঃ 3 + 5 = 8.

 

জোড় সংখ্যা × জোড় সংখ্যা = জোড় সংখ্যা।

যেমনঃ 6 × 8 = 48.

 

জোড় সংখ্যা × বিজোড় সংখ্যা = জোড় সংখ্যা।

See also  গণিতের জনক ও গণিতের কিছু ইংরেজি শব্দ

যেমনঃ 6 × 7 = 42

 

বিজোড় সংখ্যা × বিজোড় সংখ্যা = বিজোড় সংখ্যা।

যেমনঃ 3 × 9 = 27

 

ক্যালকুলেটর ছাড়া যে কোন সংখ্যাকে ভাগ করার একটি effective টেকনিক!

 

ক্যালকুলেটর ছাড়া যে কোন সংখ্যাকে 5 দিয়ে ভাগ করার একটি effective টেকনিক

13/5= 2.6 (ক্যালকুলেটর ছাড়া মাত্র ৩ সেকেন্ডে এটি সমাধান করা যায়)

 

টেকনিকঃ

5 দিয়ে যে সংখ্যাকে ভাগ করবেন তাকে 2 দিয়ে গুণ করুন তারপর ডানদিক থেকে 1 ঘর আগে দশমিক বসিয়ে দিন। কাজ শেষ!!! 13*2=26, তারপর থেকে 1 ঘর আগে দশমিক বসিয়ে দিলে 2.6 ।

213/5=42.6 (213*2=426)

0.03/5= 0.006 (0.03*2=0.06 যার একঘর আগে দশমিক বসালে হয় 0.006) 333,333,333/5= 66,666,666.6 (এই গুলা করতে আবার ক্যালকুলেটর লাগে না কি!)

 

12,121,212/5= 2,424,242.4

এবার নিজে ইচ্ছেমত 5 দিয়ে যে কোন সংখ্যাকে ভাগ করে দেখুন

ক্যালকুলেটর ছাড়া যে কোন সংখ্যাকে 25 দিয়ে ভাগ করার একটি effective টেকনিক

13/25=0.52 (ক্যালকুলেটর ছাড়া এটিও সমাধান করা যায়)

 

 

টেকনিকঃ

 

25 দিয়ে যে সংখ্যাকে ভাগ করবেন তাকে 4 দিয়ে গুণ করুন তারপর ডানদিক থেকে 2 ঘর আগে দশমিক বসিয়ে দিন। 13*4=52, তারপর থেকে 2 ঘর আগে দশমিক বসিয়ে দিলে 0.52 ।

210/25 = 8.40

0.03/25 = 0.0012

222,222/25 = 8,888.88

13,121,312/25 = 524,852.48

 

 

ক্যালকুলেটর ছাড়া যে কোন সংখ্যাকে 125 দিয়ে ভাগ করার একটি effective টেকনিক

 

01.7/125 = 0.056

টেকনিকঃ

125 দিয়ে যে সংখ্যাকে ভাগ করবেন তাকে 8 দিয়ে গুণ করুন তারপর ডানদিক থেকে 3 ঘর আগে দশমিক বসিয়ে দিন। কাজ শেষ! 7*8=56, তারপর থেকে 3 ঘর আগে দশমিক বসিয়ে দিলে 0.056 ।

111/125 = 0.888

600/125 = 4.800

 

আসুন সহজে করি

টপিকঃ 10 সেকেন্ডে বর্গমূল নির্ণয়।

বিঃদ্রঃ যে সংখ্যাগুলোর বর্গমূল 1 থেকে 99 এর মধ্যে এই পদ্ধতিতে তাদের বের করা যাবে খুব সহজেই। প্রশ্নে অবশ্যই পূর্ণবর্গ সংখ্যা থাকা লাগবে। অর্থাৎ উত্তর যদি দশমিক ভগ্নাংশ আসে তবে এই পদ্বতি কাজে আসবেনা।

 

অবশ্যই মনোযোগ দিয়ে পড়তে হবে এবং প্র্যাকটিস করতে হবে। নয়ত ভুলে যাবেন। তবে আসুন শুরু করা যাক। শুরুতে 1 থেকে 9 পর্যন্ত সংখ্যার বর্গ মুখস্থ করে নিই। আশা করি এগুলো সবাই জানেন।

সুবিধার জন্যে আমি নিচে লিখে দিচ্ছি-

1 square = 1, 2 square = 4
3 square = 9, 4 square = 16
5 square = 25, 6 square = 36
7 square = 49, 8 square = 64
9 square = 81

 

এখানে প্রত্যেকটা বর্গ সংখ্যার দিকে খেয়াল করলে দেখবেন, সবার শেষের অংকটির ক্ষেত্রে –

 

1 আর 9 এর বর্গের শেষ অংক মিল আছে (1, 81)

 

2 আর 8 এর বর্গের শেষ অংক মিল আছে(4, 64)

See also  পাটিগণিতের সুত্রাবলী

 

3 আর 7 এর বর্গের শেষ অংক মিল আছে (9, 49);

 

4 আর 6 এর বর্গের শেষ অংক মিল আছে(16, 36);

 

এবং 5 একা frown emoticon

 

 

দ্দুর পর্যন্ত বুঝতে যদি কোন সমস্যা থাকে তবে আবার পড়ে নিন।

 

উদাহরণ:- 576 এর বর্গমূল নির্ণয় করুন।

 

প্রথম ধাপঃ যে সংখ্যার বর্গমূল নির্ণয় করতে হবে তার এককের ঘরের অংকটি দেখবেন। এক্ষেত্রে তা হচ্ছে ‘6’ ।

 

 দ্বিতীয় ধাপঃ উপরের লিস্ট থেকে সে সংখ্যার বর্গের শেষ অংক 6 তাদের নিবেন। এক্ষেত্রে 4 এবং 6 । আবার বলি, খেয়াল করুন- 4 এবং 6 এর বর্গ যথাক্রমে 16 এবং 36; যাদের এককের ঘরের অংক কিনা ‘6’ । বুঝতে পেরেছেন? না বুঝলে আবার পড়ে দেখুন।

 

তৃতীয় ধাপঃ 4 / 6 লিখে রাখুন খাতায়। (আমরা উত্তরের এককের ঘরের অংক পেয়ে গেছি, যা হচ্ছে 4 অথবা 6; কিন্তু কোনটা? এর উত্তর পাবেন অষ্টম ধাপে, পড়তে থাকুন )

 

চতুর্থ ধাপঃ প্রশ্নের একক আর দশকের অংক বাদ দিয়ে বাকি অংকের দিকে তাকান। এক্ষেত্রে এটি হচ্ছে 5 ।

 

পঞ্চম ধাপঃ উপরের লিস্ট থেকে 5 এর কাছাকাছি যে বর্গ সংখ্যাটি আছে তার বর্গমূলটা নিন। এক্ষেত্রে 4, যা কিনা 2 এর বর্গ। (আমরা উত্তরের দশকের ঘরের অংক পেয়ে গেছি, যা হচ্ছে 2 )

 

ষষ্ঠ ধাপঃ 2 এর সাথে তার পরের সংখ্যা গুন করুন। অর্থাৎ 2*3=6

 

সপ্তম ধাপঃ চতুর্থ ধাপে পাওয়া সংখ্যাটা (5) ষষ্ঠ ধাপে পাওয়া সংখ্যার (6) চেয়ে ছোট নাকি বড় দেখুন। ছোট হলে তৃতীয় ধাপে পাওয়া সংখ্যার ছোটটি নেব, বড় হলে বড়টি। (বুঝতে পেরেছেন? নয়ত আবার পড়ুন)

 

অষ্টম ধাপঃ আমাদের উদাহরণের ক্ষেত্রে 5 হচ্ছে 6 এর ছোট, তাই আমরা 4 / 6 মধ্যে ছোট সংখ্যা অর্থাৎ 4 নেব।

 

নবম ধাপঃ মনে আছে, পঞ্চম ধাপে দশকের ঘরের অংক পেয়েছিলাম 2 এবার পেয়েছি এককের ঘরের অংক 4 । তাই উত্তর হবে 24 কঠিন মনে হচ্ছে? একদমই না, কয়েকটা প্র্যাকটিস করে দেখুন। আমার মতে খুব বেশি সময় লাগার কথা না।

 

উদাহরণ:- 4225 এর বর্গমূল বের করুন।

মনে আছে 5 যে একা ছিল? সে একা থাকায় আপনার কাজ কিন্তু অনেক সোজা হয়ে গেছে। দেখুন কেনো প্রশ্নের শেষ অংক 5 হওয়ায় উত্তরের এককের ঘরের অংক হবে অবশ্যই 5 । – প্রশ্নের একক ও দশকের ঘরের অংক বাদ দিয়ে দিলে বাকি থাকে 42 ।

– 42 এর সবচেয়ে কাছের পূর্ণবর্গ সংখ্যা হচ্ছে 36, যার বর্গমূল হচ্ছে 6 । তাই উত্তর হচ্ছে 65

Related Articles

Back to top button